翻訳と辞書
Words near each other
・ Complete lattice
・ Complete linkage
・ Complete Linux Installer
・ Complete list of authors published as UK first editions by Collins Crime Club
・ Complete list of downloadable songs for the Rock Band series
・ Complete list of Rock Band Network songs
・ Complete Live at the Spotlight Club 1958
・ Complete Madness
・ Complete Mage
・ Complete market
・ Complete Me
・ Complete measure
・ Complete metric space
・ Complete mixing
・ Complete Music Update
Complete numbering
・ Complete Onside Soccer
・ Complete partial order
・ Complete Poems
・ Complete protein
・ Complete Psionic
・ Complete quadrangle
・ Complete quotient
・ Complete Recordings (Black Tambourine album)
・ Complete review
・ Complete Riverside Recordings
・ Complete Savages
・ Complete School
・ Complete Scoundrel
・ Complete sequence


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Complete numbering : ウィキペディア英語版
Complete numbering
In computability theory complete numberings are generalizations of Gödel numbering first introduced by A.I. Mal'tsev in 1963. They are studied because several important results like the Kleene's recursion theorem and Rice's theorem, which were originally proven for the Gödel-numbered set of computable functions, still hold for arbitrary sets with complete numberings.
== Definition ==

A numbering \nu of a set A is called complete (with respect to an element a \in A) if for every partial computable function f there exists a total computable function h so that
: \nu \circ h(i) =
\left\\ i \in \mathrm(f), \\
a &\mbox.
\end
\right.

The numbering \nu is called precomplete if
: \nu \circ f(i) = \nu \circ h(i) \qquad i \in \mathrm(f).\,
== Examples ==
* any numbering of a singleton set is complete
* the identity function on the natural numbers is ''not'' complete
* a Gödel numbering is precomplete

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Complete numbering」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.